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EXECUTIVE SUMMARY

The Android™ Operating System (OS) is far and away the most popular OS for mobile devices. However,
the ease of entry into the Android™ Marketplace allows for easy distribution of malware. This report surveys
malware distribution methodologies, then describes current work being done to determine the risk that an
“app” (application) is infected. App analysis methods discussed include code and behavioral analysis
methods.
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1. INTRODUCTION

The Android™ Operating System (OS) is the most popular platform for mobile devices, currently holding
at least 80% of marketshare [1], which continues to grow and is expected to reach more than 1.6 billion users
by 2020 [2]. The platform offers an open entry point into the “app” (application) market for developers,
which also gives malicious actors access to millions (potentially billions) of devices [3].

This report gives an exposition on risk metrics for applications in the Android™ OS ecosystem and is
organized as follows. First, common malware distribution methods are explained and suggestions for
mitigation are made. Then both static code analysis and behavior-based analysis methods for risk assessment
are surveyed. Several other approaches to risk analysis, such as crowd sourcing risk analysis, are surveyed.



2. MALWARE AND ITS DISTRIBUTION

Malware may include trojans, backdoors, worms, botnets, spyware, adware, and ransomeware:

* Trojans appear to be benign apps, but perform harmful activities without user knowledge or consent.
A recent trend in trojans has seen attacks on multi-factor authentication for banking transactions,
capturing usernames and passwords and then stealing Mobile Transaction Authentication Numbers
(mTANS) to silently complete transactions [4].

* Backdoors allow outsiders to stealthily enter the system, bypassing normal access features.

» Worms spread exact copies of themselves and spread through the network, for instance Bluetooth
worms will copy themselves on paired devices [5].

» Botnet apps allow for a device, called a bot to be controlled by an outside server, and collections of
bots to act in concert as botnets. Botnets are often used in Distributed Denial of Service (DDoS)
attacks. Botnet apps may include instructions to download other malicious packages.

* Spyware often presents itself as a good utility, but monitors user activities in the background (e.g.,
contacts, messages, locations, etc.).

» Adware is used to target a device user for personalized advertisements, which may degrade
operations.

» Ransomeware [6] locks a user’s device, making it inaccessible until a ransome is paid through an
online payment service (oftentimes using a cryptocurrency like Bitcoin, which makes payments
untraceable [7]).

2.1 IS A POPULAR APP FREE? THE THREAT POSED BY REPACKAGING

Oftentimes, multiple versions of an app will appear in the app store when a potential user searches for
them. One version of an app will have a monetary cost associated with it while other versions will be listed
as free to the user. The version of the app with a monetary cost associated with it will generally be benign
while the free version(s) will be repackaged to include adware [8] (not explicitly malicious) or malware [9]
(explicitly malicious) inserted in the underlying code. There are reports that 77% of the top 50 free apps in
the Google Play Store are repackaged [10]. Repackaging is among the most common methods for Android ™
malware distribution [11, 12]; repackaging and risk can be minimized by ensuring that only the official
paid-for app is downloaded.

2.2 OTHER DISTRIBUTION TECHNIQUES: DRIVE-BY DOWNLOADS, DYNAMIC PAY-
LOADS, AND STEALTH TECHNIQUES

In addition to repackaging of apps, malware may be distributed by other means.
2.2.1 Drive-by Downloads

A drive-by download (DbD) occurs when malware is unintentionally downloaded in the background [10].
The DbD attack has been a common tactic for malware distribution and propogation for many years [11].
Traditionally, the anatomy of a DbD attack would include an attacker compromising a legitimate Web
application and uploading a malicious Javascript™. The ultimate victim of the DbD will become infected by
sending a Web request to the server, which sends the malicious code along with the legitimately requested
Web page and the Javascript™ downloads its malicious payloads [13]. Many of these attacks target



third-party browser plug-ins, which introduce “low-hanging fruit” vulnerabilities [13, 11], because they may
undergo less testing. Many plug-ins are often written in languages like C, without concern for security best
practices, and are distributed as executable binaries [13].

DbD attacks for mobile devices do not typically target browser vulnerabilities, but may entice users to
download feature-rich apps. Zhou and Jiang [11] found four families of Android™ DbD malware:

* GGTracker uses in-app advertisements to attract users to malicious links. Users are usually
subscribed to a premium rate service without their knowledge [14].

« Jifake is downloaded by malicious Quick Response (QR) codes that redirect the user to a URL
containing it. The malware sends several SMS messages to a premium-rate number, and is the first
known case of a malicious QR code-based attack [15].

* SpyEye-in-the-Mobile (Spitmo) targets online banking mobile transaction authentication numbers
(mTANSs) by directing users to download an app that promises safer online banking. Once
downloaded, user mTANS and Short Message Service (SMS) messages are sent to a remote server
[16].

* ZeuS-in-the-Mobile (Zitmo) is a variant of the ZeuS botnet and, like Spitmo, targets online banking
activities, primarily in Europe. It steals mTANs and sends them to remote servers [17].

2.2.2 Stealth Malware Techniques

Malware developers are taking advantage of the limited resources available on Android™ devices that
limit scanning capabilities. Hardware vulnerabilities and obfuscation of malicious code allow easy avoidance
of anti-malware apps [18]. Some of these techniques include key permutation, native code execution, code
encryption, and Java™ reflection [10].

2.2.3 Update Attacks

An Update Attack is a malware distribution technique that is very resistant to static scanning techniques.
Instead of downloading the entire malicious package, there is only an update component that fetches the
malicious payload at runtime [11]. Some examples of Update Attacks include:

* BaseBridge [19] includes one exploit, “rage against the cage”, which downloads a payload
application which then attempts a privilege escalation attack to gain root access. It transmits
personally identifiable information to a remote server [20].

* DroidKungFuUpdate downloads malware through a third-party library that provides a legitimate
notification functionality [11].

* AnserverBot [21] upgrades certain components within their host app. Since the entire app is not
updated, user permission is not required. (This is a distinct difference from BaseBridge and
DroidKungFuUpdate.) AnserverBot retrieves a public (but encrypted) blog entry containing the
payloads for the update.

 Plankton [19] operates similar to AnserverBot, except it downloads additional dex files to
dynamically extend its capabilities.



3. CODE ANALYSIS METHODS

An effective method for assessing risk of malware infection in Android™ apps is the comparison of
“feature vector” analysis. Feature vectors summarize important characteristics of an object’s state [22] and
feature vector elements for a given app are characteristic actions taken by that app. Apps are classified into
different categories based on their claims. Benign apps within each category that have similar functions are
expected to have similar permissions requests, while malicious apps deviate. The extent of this deviation can
be useful for assessing the risk of malware infection in an app. The use of weighting mechanisms [23] are
useful for feature vector analysis.

Almost all risk assessment for Android™ apps are permissions-based. Reference [24] shows a feature
vector analysis approach to to risk metrics by considering the vector of permissions requests. Apps are
separated into 29 categories and then the permissions tendencies of benign apps are used to create baseline
permissions vectors for each category. There are 144 permissions available in the Android™ operating
system; however, 53 of these were not available to third-party applications, and so the remaining 91
permissions were used for a permissions vector. A 91-dimension Boolean vector was constructed with a 1
denoting when a permission was requested and a 0 when it was not. Every app is represented in this manner
and compared against a category baseline permissions vector using a weighted Euclidean metric. In the
Cartesian Coordinate System, p = (p1, p2, -.., pn) and q = (q1, 2, ---, ¢ ) are points in a Euclidean n-space
and the distance between them is defined by

(p,a) =d(p,aq) = )]

When certain coordinates are deemed of greater or lesser importance, a weighted Euclidean metric is used:

d(p,q) = d(p,q) = | Y wilg: — pi)*. )
1=0

Specifically, 24 permissions that were seen as risky were given a weight of w; = 2, while the others were
simply given a standard weight of w; = 1.

Two data sets were used for testing this methodology. Because the authors are Chinese, they chose to
download apps from the Tencent Android™ Market, a leading Android™ market in that country. This data
set consisted of 7099 verified benign apps in various categories. The second data set consisted of 1260
malware samples downloaded form the Android™ Malware Gene Project [25], covering the majority of
Android™ malware families. The market data set of 7099 verified benign apps were mainly used to create
baseline vectors for each app category.

Sanz et al. [26] use sets of feature vectors of permissions and uses-features for anomaly detection. This
information is attained from the AndroidManifest .xml file that is packed with every Android™ app.
Uses-features, while optional information, determine the feature used by the app.

A 130-dimension permissions vector and a 37-dimension uses-feature vector (where possible) were
generated from this information. “Normality” (baseline) models were developed using the information in the
AndroidManifest.xml files from 1,811 verified benign samples, while 2,808 malware-infected
samples were tested for anomalies. Multiple metrics were used for anomaly detection and risk analysis,
including the Euclidean metric (1), the Manhattan metric, and cosine similarity. The Manhattan metric is the



distance between two points p and ¢, summing the lengths of the projections of the line segments between
the points onto the coordinate axes:

d(p,a) = d(q,p) = Y _ |pi —ail. ()
=0

Cosine Similarity measures the similarity between vectors by finding the cosine of the angle between them.
Measuring distance and not similarity (and hence a metric) requires the use of 1 — CosineSimilarity:

d(p,q) = d(q,p) =1—cos(f) =1 —
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Grace et al. [27] detail a prototype system, RiskRanker, which utilizes multi-order code analysis to
determine the risk of malware in apps. RiskRanker is meant to be a proactive scheme that sifts through
Android™ markets spotting zero-day malware without relying on malware specimines or their signatures.

Apps are analysed and separated by potential risk levels:

* High Risk apps exhibit platform-level software vulnerabilities that could be used to compromise
device integrity without proper authorization.

* Medium Risk apps can cause financial loss or disclose private information about the user, but do not
exploit software vulnerabilities.

* Low Risk apps may collect general personal or device-specific information.

RiskRanker subjects apps to two sets of code analysis. The First Order Analysis are designed to expose
High and Medium Risk apps. High Risk Apps are detected by distilling known vulnerabilities into
vulnerability signatures that capture their essential characteristics, which are exploited when the vulnerability
is exploited. Apps are pre-processed to detect the presence of native code, and these apps are checked for the
presence of root exploits. Medium Risk Apps are detected by making use of Android’s well-defined
conditions for callback invocation. This assumes that when a malware intends to charge the device user or
transmit sensitive data without their knowledge, it is unlikely to ask permission via a callback handler.
RiskRanker performs static analysis on Dalvik [28] bytecode contained in each app, using control- and
data-flow analysis to unambiguously identify the callbacks that call to a method of interest.

Dalvik is a virtual machine that runs applications and code written in Java™. Dalvik requires that control-
flow graphs be reliably determined in advance. Once code is loaded for execution, Dalvik employs a static
verifier to ensure that methods and classes are well-formed and can be resolved. However, this verification is
only for intra-method data-flow analysis, determining the type of virtual register at each point in the program
[27]. Moreover, Android™ apps do not require being called in any strict sequence and this leads to apps
having a very complicated lifecycle. The control-flow graph is traversed in reverse, searching for callback
methods that do not imply user interaction. This approach of backwards slicing to determine where the
arguments of a network call originate leads to spotting execution paths for potential information leaks.

The First Order Analysis excels at handling non-obfuscated apps, but may not be able to detect malware
that employs encryption or dynamically changes its payload. RiskRanker’s Second Order Analysis collects
and correlates behaviors that are common among malware. The first step in the Second Order Analysis is
capturing distinctive behavior that is not likely malicious in and of itself, but is abused by existing malware.
An example of this type of behavior is the inclusion of a child app [29], within the host app, that can
escalate privileges and even remain after the host has been uninstalled. Another example is the use of
Java’s encryption APIs (application program interfaces) [30] for encrypting their data and communication.
These examples are commonly used by legitimate apps and can be abused by malware. Specifically, to
recognize these behaviors, the following information is automatically collected:
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1. Child app location,

2. Background dynamic code loading and execution paths,
3. Programmed access to assets/res directories,

4. Use of encryption and decryption methods, and

5. Native code execution and Java Native Interface (JNI) access.

Malware oftentimes stores exploit code in an encrypted format within the assets or res directories.
This code will be decrypted and read at runtime. This behavior helps evade the code analysis in the First
Order Analysis. The assets and res directories are designed to contain art assets, user interface
descriptions, and so on, but may also contain arbitrary data. Accessing these directories in a code path that
includes encryption and execution methods should be considered suspect, and it goes without saying that
storing native binaries in such unusal circumstances suggests that an app is hiding something. Java™
provides native support for cryptography with the javax.crypto package. With easy to use, standardized
encryption and hashing functions, this is an alluring package for malware developers (although in the future
they may use difference cryptography packages), and so RiskRanker searches specifically for the use of its
APIs. Encrypted native binaries will be run once they have been decrypted and loaded, so JNI calls and
other invocations of native code are also noted.

Android™ provides a functionality that can be used to load and execute bytecode from an arbitrary source
at runtime. More specifically, any app can make use of the DexClassLoader to load classes from
embedded . jar and . apk files. This kind of unsafe dynamic loading of untrusted Dalvik code is noted in
the Second Order Analysis phase of RiskRanker. None of the Second Order Analysis behaviors in and of
themselves imply that an app is malware, and many legitimate apps make use of these functionalities. For
example, dynamic loading is used by many legitimate apps for updating functionality without reinstalling the
app itself.

RiskRanker was tested with 188,318 apps collected over several months, and successfully detected 718
malicious apps from 29 malware families, including 322 zero-days from 11 malware families. The authors
point out that RiskRanker is not a panacea for several reasons:

* Some malware families do not engage in behavior that the system was designed to detect. For
instance, malware that utilizes social engineering attacks are difficult for an automated system to
detect.

* Malware may not share the same payload as other members of its family.

* Some apps are “guilty by association,” such as an installer that is not itself malicious but is used to
install a malicious payload.



4. BEHAVIORAL ANALYSIS

As far back as 2011, Burguera et al. [31] developed a framework for Android™ malware risk analysis that
crowdsourced app behavior by collecting traces of application execution traces. This framework relies on
three main components: data acquisition, data manipulation, and a malware analysis and detection system.
The data acquisition component collects application data from the user, including basic device information,
a list of installed applications, and system call log files. The data manipulation component manages and
parses all the data collected; device information is stored in a central database and system call traces are used
to create a feature vector for analysis. Malware analysis and detection is done by using K-means clustering
[32] over the crowd-sourced system call vectors to create a “normality model” and detect anomolous
behavior.

A lightweight app, Crowdroid, was developed that is available for installation from Google’s Market and
monitors Linux® Kernel system calls, sending them to a centralized server. Non-personal, behavior-related
data is sent to the server for analysis. Once parsed, a baseline feature vector of system calls is developed.
System calls are how a program requests services from the OS’s kernel and provide useful functions to
applications like network-, file-, or process-related operations. The Linux® kernel is executed in the lowest
layer of Android’s architecture, so all requests made from upper layers must pass through the kernel using
the system call interface before execution in the hardware. Specifically, Crowdroid uses a Linux® tool,
Strace, to collect system calls to generate an output file of all Android™ application events. This file
provides useful information for each system call executed by an app (e.g., count, opened and accessed files,
execution time stamps).

Burguera’s proposed framework and app, Crowdroid, underwent limited experimental testing. Self-written
programs were used to provide a normality model and then the same programs were modified with
self-written malware. The framework claimed a 100% success rate in detecting self-written malware.

A second round of experimental testing featured two publicly available specimens of malware:

1. PJApps, contained in the Steamy Windows app - Steamy Windows gives the smart phone screen
the appearance of being covered with steam and lets the user wipe it off. The PJApps malware
starts a background application and is programmed to perform multiple functions.

2.  HongTautou trojan, contained within the Monkey Jump 2 app - Monkey Jump 2 is a game that is
freely available through Google’s Play Store, but is repackaged with the HongTautou trojan through
multiple third-party sites. HongTautou sends information and browses the Internet.

The experimental testing consisted of 20 clients running the Crowdroid app, and up to 60 user interactions
with each app for malware discovery. Specifically, there were 60 interactions with the self-written apps and
malware, boasting a 100% detection rate. There were only eight interactions with the Steamy Windows and
PJApps apps and 20 interactions with Monkey Jump 2 and the HongTautou trojan. Crowdroid showed
100%detection of PJApps, but only 85% detection of HongTautou. The reason for the lower success rate in
detectign HongTautou is that it makes fewer sytem calls, only sending information and browsing the
Internet.



5. OPTIMIZATION OF RISK ANALYSIS PROCESSES

Android™ app markets, both the official Google Play Store and alternative markets, simplify consumer
software distribution. However, analysis of apps in these markets is a daunting task; the Google Play Store
alone was approaching 2 million apps by the beginning of 2016 [33]. Chakradeo, et al., propose Mobile
Application Security Triage (MAST) [34] an optimization of Android™ app market malware evaluation
processes utilizing Multiple Correspondence Analysis (MCA) [35]. The triage process is analogous to the
prioritization of patients in a hospital emergency room. Triage is neither diagnosis nor treatment, but
allows resource allocation to go where there is the greatest obvious need while delaying or outright
dismissing the treatment of others. MAST was developed to provide a rank-ordered list that can determine
which apps in a market are suitable candidates for deeper, more costly analysis.

MCA is an extension of correspondence analysis that assists analysis of relationships between several
categorically dependent vairables and is used with sets of observations described by a set of nominal
variables [35]. MCA asks “individuals” a series of “questions” and maps each individual and answer to a set
of coordinates in the “principle axes,” where information is condensed so that the majority of information is
reflected with just a few axes. These principle axes can also be indicators of “hidden variables” that give
better insight into collections of answers—indeed, a skilled analyst can describe these hidden variables by
the principle axes and resulting point clusters.

Given a point cloud where there are a number, N, of questions with answers describing individuals, a
cloud with a large N will have certain dimensions that are more interesting than others. Moreover, the most
interesting dimensions of a large cloud may not be known a priori. MCA transforms a cloud of
N-dimensional coordinates into principal components, where the first dimension is guaranteed to show more
information than the second, and the second more than the third, etc.

Two insights are used for transforming clouds into principal coordinates:

1. Scaling less common answers as more distinct than more common answers, and
2. Variance of data.

Mobile Application Security Triage (MAST) uses MCA to rank Android™ apps in order of relative
suspicion. MAST works as follows:

1. App atributes that define interesting security properties are identified.
2. Related attribute sets are combined to create an MCA questionnaire.
3. MCA is run over multiple polls to generate rough indications of suspicious behaviors.

4. The rough indicators are merged to create a ranking of application suspiciousness.



Mobile Application Security Triage uses easy-to-obtain attribute information from the application
manifest, without using market-specific metadata. Specifically, MAST considers four attributes:

1. Permissions restrict access to security-sensitive operations. MAST considers only the 114
permissions defined by the Android™ framework, though custom permissions could be considered
in addition to these.

2. Intents provide interfaces between core platform functionality and interactions between third-party
apps. Intent filters handle intents by specifying pre-agreed on action strings to customize user
experiences. There are 92 action strings defined in the Android™ framework that MAST takes into
account.

3. Native code allows third-party developers to include native libraries in their app. MAST only
considers whether or not an app contains native libraries.

4. The .zip files have no restrictions on what they may hold, and MAST considers their presence or
absence in an app’s main archive.
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